
Based on MO calculations and experimental data, the
unusual regioselectivity in bromination of sampangine (1) is
discussed; the proposed mechanism includes initial interaction
of bromine or some solvents with nitrogen atom (N-6 in 1) hav-
ing a higher electron density.

In the course of structure-activity relationship studies on
sampangine (7H-naphtho[1,2,3-i,j][2,7]naphthyridin-7-one) (1),
a natural prototype of new antifungal agents,1 we found a pecu-
liar regioselectivity in bromination of 1. In typical conditions 4-
bromosampangine (3) was formed exclusively, while in
nitrobenzene 3-bromosampangine (2) was also obtained.1b

Although there are numerous publications for halogenation of
heterocycles,2 only a few papers have attempted to explain
regioselectivity in mechanistic terms.3-6

This paper describes a thorough study of bromination of
sampangine with emphasis on both, theoretical and experimen-
tal aspects of its unusual selectivity.

We studied the reaction of sampangine with bromine in
protic and aprotic solvents of different polarities (Table 1).7 4-
Bromosampangine (3) was exclusively formed in acetic acid or
ethanol.  On the other hand, the use of some solvents such as
acetonitrile, benzonitrile or nitrobenzene changed the regiose-

lectivity of the reaction leading to the formation of increasing
amounts of 3-bromosampangine (2).

Usually the densities of the highest occupied molecular
orbital (HOMO) provide a good predictor of regioselectivity in
electrophilic bromination of heterocyclic systems.8,9 The HOMO
densities calculated for sampangine10 pointed out that the posi-
tion C-3 was preferential for electrophilic attack.  Also the poten-
tial energies calculated for the intermediate σ-complexes showed
lower values for the 3-bromo intermediate (2a) as compared to
the 4-bromocounterpart (3a) (see Figure 1).11 However, no reac-
tion at the C-3 was observed under the typical conditions.

This situation prompted us to assume that the bromination
of sampangine does not go through the direct electrophilic sub-
stitution, but rather through the addition-elimination mechanism
presented in Scheme 1.

In this mechanism a bromine atom forms an initial interme-
diate adduct (Int 1) with nitrogen atom N-6 of sampangine, fol-
lowed by reversible 1,2-addition of bromine to C=N bond of
pyridine ring (Int 2). The next step is an irreversible addition of
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bromine ion to form the intermediate Int 3.  From that point a
substitution of hydrogen atom takes place with eventual forma-
tion of 4-bromosampangine (3).  The minimum energies of
intermediates calculated for Int 2 and Int 3 have now lower
values than the intermediate in direct substitution (2a) and the
corresponding counterparts (Int 7 and Int 8) for bromination at
the position C-3.  This supports the preferential bromination at
the sampangine C-4 position under the typical conditions.

This plausible mechanism assumes the higher electron den-
sity of nitrogen atom N-6 in sampangine.  This assumption is in
conflict with the currently accepted generalization that
pyridines containing electron-withdrawing groups such as car-
bonyl at the α-position are weaker bases.  This generalization,
however, has been found to be not valid for a rigid sampangine
system with s-cis configuration of carbonyl group and nitrogen
atom N-6.  The proximity of a lone pair of electrons of N-6 and
carbonyl oxygen in such a system should result in interaction
between these lone pair orbitals.  Ab initio calculations (HF/6-
31G* level) clearly indicate the presence of such interaction.12

The orbitals on N-6 are distorted13 and the lone pair of electrons
has a higher energy than those on N-1.  The charge calculations
based on fit to the electrostatic potential (ESP method) suggest
that N-6 has higher  electron density.14 Also 15N-NMR experi-
ments with sampangine show that nitrogen atom at position N-6
is protonated first.15  Only the corresponding Mulliken charges
showed opposite result.1c This contradiction may be related to
the properties of this method which, being the simplest parti-
tioning scheme, may not adequately consider the variation of
the charge population based on the interaction of the lone pair
orbitals.  

The change in the regioselectivity of bromination in ace-
tonitrile, benzonitrile, or nitrobenzene can be explained now on
the basis of the formation of complexes (e.g.1S) between those
solvents and nitrogen atom N-6 and/or carbonyl oxygen that
hinders N-6 from forming an initial adduct (Int 1) with
bromine.16 In such circumstances, bromine may form an
adduct (Int 6) with an available nitrogen atom N-1, leading to
the formation of 3-bromosampangine (2) in similar chain of
events, like in the case of 4-bromination (see Scheme 2).

The largest amounts of 2 were formed in nitrobenzene,
which must make the most stable complex with sampangine.17

A decrease in the yield of 2 with an increase of the temperature
can be ascribed to a decrease in the association constant of
charge-transfer complexes.18
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